## Computing an Optimal Control Policy for an Energy Storage

**Pierre Haessig**, Thibaut Kovaltchouk, Bernard Multon, Hamid Ben Ahmed, and Stéphane Lascaud

> EDF R&D LME, ENS Cachan SATIE contact : pierre.haessig@ens-cachan.fr

EuroSciPy 2013, Brussels, August 24th 2013

Companion article: http://publications.pierreh.eu

#### Outline of the presentation



#### 2 Example of Ocean Power Smoothing



3 solving Dynamic Optimization with Dynamic Programming

### Outline of the presentation





solving Dynamic Optimization with Dynamic Programming

### My background

- Curriculum in Electrical Engineering and Control Theory
   → Matlab/Simulink kingdom
- PhD student on Electricity Storage in relation to Wind Energy
- Python for all my simulation and visualisation work (and a bit of R for time series analysis)



# StoDynProg: a Dynamic Optimization problem solving code

Working on the management of Energy Storage with Wind Power, I've progressively discovered that:

- my problems fall in the class of *Dynamic Optimization* (a quite specific problem structure)
- the Dynamic Programming approach exists to solve them.
- basic DP algorithms are "too simple to be worth implementing" !!

# StoDynProg: a Dynamic Optimization problem solving code

Working on the management of Energy Storage with Wind Power, I've progressively discovered that:

- my problems fall in the class of *Dynamic Optimization* (a quite specific problem structure)
- the Dynamic Programming approach exists to solve them.
- basic DP algorithms are "too simple to be worth implementing" !!

So I've started a generic code to solve all *my* problems and hopefully other Dynamic Optimization problems as well.

I wanted to challenge this "genericity claim" by trying it on a *different* problem: I took it from a topic of interest of my research group: Ocean Power Smoothing (with an Energy Storage).

#### Outline of the presentation





#### (2) Example of Ocean Power Smoothing

#### Ocean Wave Energy Harvesting



(CC-BY-NC picture by polandeze) www.flickr.com/photos/polandeze/3151015577

Harvesting electric power from Ocean Waves with "big machines" is an active area of Research & Development.

There are no industrialized devices yet (unlike for wind & sun), but rather a wide variety of prototypes machines: Wave Energy Converters



E.ON P2 Pelamis, July 2011 http://www.pelamiswave.com

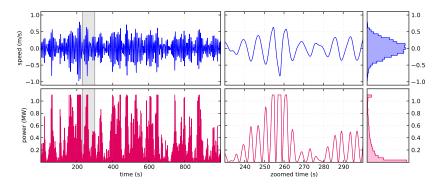
#### Ocean Energy Converter: the SEAREV



Hydro-mechanical design from Centrale Nantes.

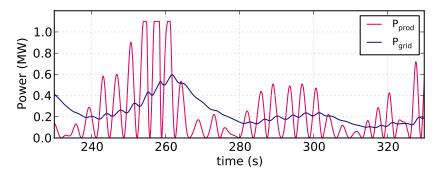
My group involved in the electric generator design.

# Ocean Energy Converter: the SEAREV a highly fluctuating output



SEAREV is a giant double-pendulum that swings with the waves. An electric generator "brakes" the inner wheel to generates power  $(P_{prod} = T(\Omega) \times \Omega)$ .

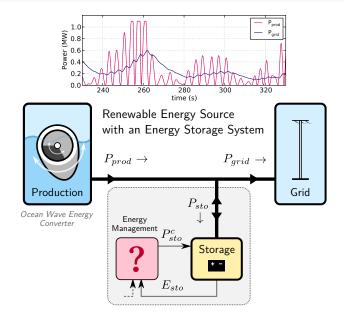
#### Power smoothing

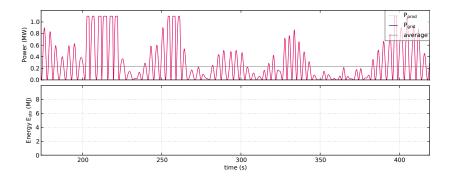


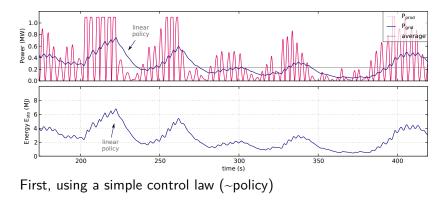
#### Objective of this application

I want to smooth out the variations of the power production. This requires an **energy buffer** to store the difference  $(P_{prod} - P_{grid}).$ 

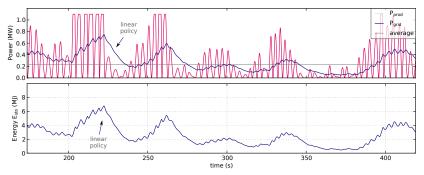
#### Power smoothing using an Energy Storage







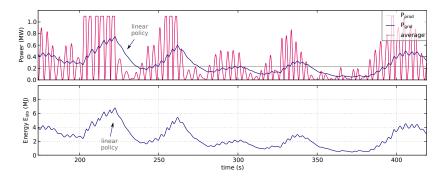
 $\ldots$  quite good result but storage is underused  $\rightarrow$  could do better.



"Doing better" is defined with an additive cost function which penalizes  $P_{grid}$  variations:

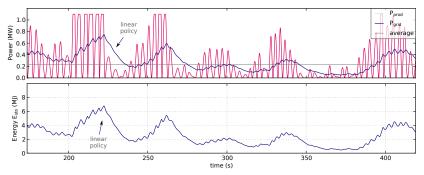
$$J = rac{1}{N} \mathbb{E} \left\{ \sum_{k=0}^{N-1} cost(P_{grid}(k) - P_{avg}) 
ight\} \quad ext{with } N o \infty$$

cost J should be minized.



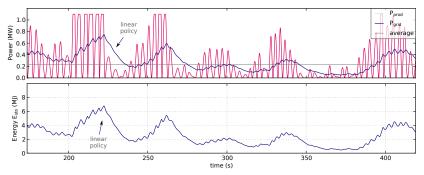
Controlling the storage (choosing  $P_{grid}$  at each time step) in order to minimize a cost function is a **Stochastic Dynamic Optimization** problem

(also called Stochastic Optimal Control)



*Dynamic Programming* (Richard Bellman, ~1950) teaches us that the optimal control is a *state feedback* policy:

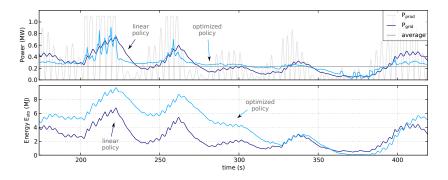
$$P_{grid}(t) = \mu(x(t))$$
 with  $x = (E_{sto}, speed, accel)$ 



*Dynamic Programming* (Richard Bellman, ~1950) teaches us that the optimal control is a *state feedback* policy:

$$P_{grid}(t) = \mu(x(t))$$
 with  $x = (E_{sto}, speed, accel)$ 

And DP gives us *methods to compute* this policy function  $\mu$ ...



And now applying the optimal feedback policy  $\mu^*$ , the standard deviation of the power injected to the grid is reduced by ~20 % compared to the heuristic policy.

This improvement just comes from a smarter use of the stored energy.

#### Outline of the presentation





Example of Ocean Power Smoothing

solving Dynamic Optimization with Dynamic Programming

### Dynamic Programming equation

In the end, the optimization problem turns into solving the DP equation:

$$J + \tilde{J}(x) = \min_{u \in U(x)} \mathbb{E}\left\{\underbrace{cost(x, u, w)}_{instant \ cost} + \underbrace{\tilde{J}(f(x, u, w))}_{cost \ of \ the \ future}\right\}$$

u is control and w is random perturbation, using generic notations

- It is a *functional* equation: should be solved for all x
- The optimal policy  $\mu: x \mapsto u$  appears as the argmin.

The DP equation is solved on a **discrete grid** over the state space. With  $x \in \mathbb{R}^n$ ,  $\tilde{J}$  and  $\mu$  are computed as *n*-d numpy arrays.

#### Equation solving, Multilinear interpolator

The resolution is done purely in Python. Basically a giant for loop with an argmin inside.

- numpy for handling arrays, with a good amount of vectorization
- itertools to iterate over the state space grid (of arbitrary dimension)
- (introspect for some signature analysis magic)

#### Equation solving, Multilinear interpolator

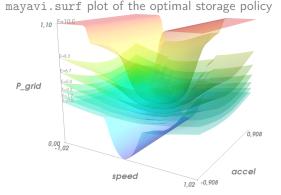
The resolution is done purely in Python. Basically a giant for loop with an argmin inside.

- numpy for handling arrays, with a good amount of vectorization
- itertools to iterate over the state space grid (of arbitrary dimension)
- (introspect for some signature analysis magic)

**Extremely useful code reuse**: a multilinear interpolator by *Pablo Winant* (within its dolo project: github.com/albop/dolo). Uses Jinja templates to generate Cython code for dimension 1-5.

Learning of this project (on scipy ML) saved me weeks, if not months !

#### Conclusion



Code should be soon on GitHub (github.com/pierre-haessig). Decent Sphinx doc with examples (and complete code for SEAREV example), but ridiculous test coverage.